AN INTRODUCTION

TO AUTOMOTIVE

mINTRODUCTION

Multi-core

A fable of parallel processing:
* Imagine you want to have a kitchen built in one day

(~ 8 hours).

* You ask a craftsman to do it but he says: “It will take
me 16 hours.”

e So you might hire a second one in order to get the job
done in time.

* BUT: while one craftsman connects the electric items
(and therefore takes the fuses out), the other one can-
not use his power tools and is blocked.

e They also spend a lot of the time talking to each other.

e They finish after 11 hours (completely stressed out) and
you agree to plan next time.

This poster sheds a light on automotive multi-core embedded
software timing aspects. Proper multi-core know-how helps
to avoid software projects running into situations as descri-
bed above.

mWHY MULTI-CORE?

N

Multi-core processors have been used for decades in domains
other than automotive. Every PC and every smartphone
comes with at least a dual-core processor. The main reason
for using more than one

core within the processor is
the ever increasing need for
more computation power. [1]
Moore's law — stated 1965

- says: “The number of tran-
sistors in a dense integrated
circuit doubles approximately
every two years."

mMULTI-CORE THEORY

Good reasons for more computing power include:
* More and more advanced vehicle features (zero-emissi-
on, autonomous driving, car-to-X communication, etc.)
» Stricter safety requirements (diverse computing, memory
protection, on-target supervision, etc.)
e Increasing use of standards and generated code limits
the scope of optimization
Building faster (higher clock-speed f) single-core processors
becomes too expensive at some point due to the following
reasons.
* Power consumption: P ~ f3 (limiting-case)
* EMC (Electromagnetic compatibility) problems
* Power dissipation > “Melting dashboard”

: Amdahl’s law:

95% “The speedup of a

. program using multiple

. processors in parallel

. computing is limited by

. the time needed for the
sequential fraction of the
'+ program.” [2]

E In other words:

' [t takes a woman nine
month to carry a child to
term. Nine women are
not going to do it in a
month.

Amdahl‘s law applies when there is a significant portion of
code which cannot be parallelized.

ZQ‘

10

.

FEEDUF

T
I
T
1
1
1
1
1
I
1
1
|
1
1
L
I
1
1
I
|

8 64 512 15;6

HMUMEEFR OF COREZS

Gustafson's law:
“Programmers tend to
set the size of problems
to use the available
equipment to solve pro-
blems within a practical
: . fixed time. Therefore,

: . if faster (more parallel)

: equipment is available,
larger problems can

be solved in the same
time.” [3]

Gustafson's law applies when a given problem can be repla-
ced by a bigger problem solving the old problem plus other
problems.

Parallel Portio'ﬁm\‘

100
A

-FEEDUF

50

—
.
.
-

20 40 60 80 100
MUMEEFR OF COREZ

Amdahl's law and Gustafson's law seem to contradict.
Which one applies to automotive projects?
e Automotive multi-core projects are mostly successors of
existing single-core projects.
- Single-core projects typically come with a great share
of sequential code.
- Thus, Amdabhl's law is more appropriate.

- o
- -
Co~ z Co 7 f"é
® v
o> | S
&0 G
| {SIMGLE-ICORE | |DEIF:E E-| |c:c-F:E 1 |

e Automotive multi-core projects come with a defined set
of features.

- The “problem"” has a fixed size. In other words: we
are not going to add just any code in order to increase
the throughput of the cores.

- Thus, Gustafson's law does not apply.

oE 08, 02

o (G0 5o]=2

<3 bE1Eg @%?
=" o8 @ e
"3 0B, 82 02
- ey Oy <
e 2t

e e T

-> Amdahl's law matches the automotive situation better,
limiting the speed increase that we can realistically expect
with multi-core processors.

mMULTI-CORE HARDWARE ARCHITECTURES

Heterogeneous multi-core processors have different cores of
different types.
Examples:

¢ Infineon TC1797 (TC1.3.1 and PCP)

¢ Freescale MPC5xx with TPU

e Freescale S12X with XGATE

e Infineon TC277 (several different cores, see next section)

Homogeneous multi-core processors have a number
of cores of the same type.
Examples:
* Freescale MPC5xxx
¢ Infineon TC277 (two TC1.6P cores, see next section)

Lock-step multi-core processors execute the same single-
core software on two separate cores at the same time, for
safety reasons. The results of the two cores get continuously
compared by the hardware. When a mismatch (=error)
occurs, the processor can switch to a safe state.

Chip designers spend a lot of effort to avoid common mode
failures: slight execution delay between the cores, separate
clock-trees, rotated and flipped 2" CPU, potential guard
ring around each CPU, etc. [4]

Example: Texas Instruments TMS570, Infineon AURIX™
(TC1.6.1 core with checker core, see next section)

T1 — state of the art timing suite

EMBEDDED
SOFTWARE

mEXAMPLE INFINEON TC27X “AURIX™ " 5]

TI M I N G e Three main processing cores:

two homogeneous ()
1.6P “performance” cores and
one 1.6E “efficiency” core.
Since all three share the same
instruction set, you could also
regard them as three homoge-
neous TC1.6.7 cores.

e Two TC1.6.1 cores have an
additional lock-step (= = -)
core.

e There are several other

heterogeneous (===gp-)
cores.

~ Homogeneous "m,

Each TriCore has local program memory and local data
memory that it can access with no delay. With significant

delay (up to 5 CPU stall cycles), each TriCore can also access

data/program memory of other cores, see also section
“09 Cloning".

Accesses to peripherals “cost” up to 4 or 7 CPU stall cycles
depending on the peripheral bus configuration.

The shared program flash and the
shared data flash cause a maximum
of (5 + number of wait-states) CPU
stall cycles [6]. These numbers show
that location of data and code has a
significant impact on the timing.

7

e - =z et Y ZZ EIT
,,’ STEF
| i :
Checker 1.6P 1.6P Security
Core performance performance Module (HSM)
Heterogeneous
Checker Tri Standby Generic Timer
riCore
Core ‘-—176 E controller Module (GTM)
A efﬁéiency = EIT =2 EBIT
\~.~ I
T =ZTEF

== EIT

Peripherals

mDIFFERENT KINDS OF PARALLELISM

The term “parallelism” refers to two or more fragments of a
program being executed at the same time on several cores.
Parallelism can take place at different levels.

6.1 APPLICATION PARALLELISM

Each application runs on one core only. One core can still
handle more than one application though. The applications
come with low cohesion i.e. they are largely independent.

Example 1: To reduce costs, two single-core ECUs are merged
into one dual-core (= multi-core) ECU. With application
parallelism, the software of each single-core ECU gets its
own dedicated core on the multi-core ECU.

Example 2: AUTOSAR concept [7]. Each core
comes with its own set of TASKs and ISRs i.e. its
own AUTOSAR application.

The AUTOSAR OS allows e.g. cross-core TASK

~“AUTOSAR

ZCORE 1

. AUTOSAR

application application

activations and inter-core communication —rii - BTELL < r—
through the 10C (Inter-OS-Application Commu- 7~ optimization ™ BTE / optimization ™,
nicator). It explicitly requires data to be copied “._ possible ./ “._ possible ./

and thus might be inefficient for large data.
Communication through the RTE can be opti-
mized (e.g. direct accesses instead of working on
copies) as long as it is intra-core communication.

~o _- ~o _-

Example 3: When migrating a single-core appli-

cation to multi-core, one sensible approach is to
have “AUTOSAR cores” and “non-AUTOSAR
cores". This approach is used with early
AUTOSAR standards that do not support multi-
core. The AUTOSAR software communicates
with the non-AUTOSAR software via complex
device drivers (CDD). A non-AUTOSAR core
could, for example, handle time-critical and/or
very frequent interrupts, reducing the number of
cache misses and pipeline stalls. There is no need
for complicated function parallelism.

BSW OS CDD

application

non
AUTOSAR

RTE application

6.2 FUNCTION PARALLELISM
Function parallelism executes closely related fragments (with
potentially high cohesion) of an application in parallel. In or-
der to find/design suitable fragments, dependencies have to
be analyzed/specified

* DFA (data-flow-analysis)

e Execution order constraints

Function parallelism is largely absent in Windows/Linux/Mac
software, mobile devices etc. These use application
parallelism mainly! There are very few examples of successful
function parallelism and these include 3D rendering software,
mainframe database software, computationally intensive sci-
entific software at research institutes and universities, etc.

Fragmenting software so that it supports function
parallelism is not easy and, when done poorly, can
result in massive use of protection mechanisms like
spinlocks, with a negative impact on the overall
performance. As Amdahl's law shows, the benefit
does not scale with the number of cores!

6.3INSTRUCTION PARALLELISM

Processor cores have pipelines which process typically 4 to

7 instructions in parallel. However, just because you have a
pipeline does not mean you exploit instruction parallelism,

which relies on being able to fetch enough instructions to fill

the pipeline.

The following techniques can reduce flow changes that stall
the pipeline and so they support efficient instruction paralle-

lism:
e inline function calls (use at least macros where inlining
is not possible)
e fewer interrupts (use polling where applicable)
e instruction reordering (optimization performed by
the compiler)

mAUTOSAR AND MULTI-CORE

AUTOSAR originally was designed for single-core
processors but has been extended with a number of
multi-core features.

e Starting and shutting down other cores

e Cross-core task activation and task chaining (however

task-migration is not supported and also not expected)
e Spinlocks (“cross-core semaphore”, explained later)
* |OC (Inter-OS-Application Communicator)

mDATA-CONSISTENCY, SPINLOCKS

AUTOSAR does not (yet) support
e AUTOSAR RTE optimization across cores (unnecessary
resource locks can be optimized away on a single-core
system but unnecessary spinlocks cannot be optimized
away on multi-core systems)
e Inter-core data-passing by reference (currently copying
data is mandatory which becomes an issue when dealing

with large data)
T AUTOSAR

GLIWA GmbH is an AUTOSAR development member

Whilst a single-core application can use interrupt locking to
ensure data-consistency, this is not sufficient for multi-core
systems sharing data between cores. A command “disable
all interrupts” only affects the core executing the command.
AUTOSAR introduces spinlocks for synchronization in multi-
core systems.

Example: assume an application has two, frequent interrupts
and it needs to know the total

Without any protection,

data-consistency cannot be guaranteed.

Execution of
myISR1 gets lost!

i '!'!l
- Shared) h
pumber of executions of both ISR (myISR<x>) memory . ! -
interrupts. { : .
DigableAllInterrupts () ; i i
. counter++; :
a) Both lnterrupts get EnableAllInterrupts () ; i
executed on a single core. } myISR1 :
++ —
GetSpinlock (spinlock) ; ¢ >

b) Both interrupts get
executed on different cores.

counter++;

}

The spinlock related AUTOSAR services are:

StatusType ReleaseSpinlock (SpinlockIdType SpinlockId) ;

StatusType GetSpinlock (SpinlockIdType SpinlockId) ;
StatusType TryToGetSpinlock (SpinlockIdType SpinlockId,
TryToGetSpinlockType* Success) ;

e ReleaseSpinlock releases a spinlock. Obtained spinlocks
must be released in the correct order, the last obtained
spinlock must be released first.

e GetSpinlock obtains a spinlock when no other core is
using it. If another core is using it then GetSpinlock

loops (spins) until the spinlock can be correctly obtained.

 TryToGetSpinlock is a non-blocking version of GetSpin-
lock. It always returns immediately with no spinning.

mCLONING

ReleaseSpinlock (spinlock) ;

The straight-forward implementation shown in Example (b) is
rarely suitable for real applications and can cause significant,
unintended delays when one core occupies a spinlock and
then handles one or more interrupts. A better implementa-
tion is shown below and can be used as a design pattern for
spinlock-usage.

TryToGetSpinlockType success;
DisableOSInterrupts();

(void)TryToGetSpinlock(spinlock, &success);
while (TRYTOGETSPINLOCK NOSUCCESS == success)
{

EnableOSInterrupts() ;

DisableOSInterrupts();

(void)TryToGetSpinlock(spinlock, &success);

}

ReleaseSpinlock() ;
EnableOSInterrupts() ;

Cloning is a very powerful concept. On the one hand it al-
lows unmodified, single-core software to execute correctly
on different cores at the same time. On the other hand, it
provides an easy way to create efficient, dedicated, multi-
core software guaranteed safe from certain kinds of data
access conflict.

With cloning, all cores see their own, local memory at the
same start address, e.g. 0xDO00000O for the DSPR (data
scratch pad RAM) of the AURIX™ TriCores. These memories
have the same addresses (overlaying) but can have different
contents and are, in some sense, clones. Any load or store
instruction using this address range accesses the memory lo-
cal to the core on which the instruction executes.

Accesses to 0xD...
reach the core-local DSPR

CORE @

COFRE A1

CORE

n

_ W _
q q q
U U 9

N RN

0xD000_0000...

Existing, single-core software with internal data can be exe-
cuted simultaneously by each core as each core uses its own
copy of internal data. No modification of the code is requi-
red, we simply locate the internal data in the cloned address
range. Processors not supporting cloning have to allocate an
array rather than a single variable and, at run-time, have to
get the core identifier and access the corresponding array
element, if they running the same code on different cores.

The AURIX™ additionally maps each DSPR address onto the
linear shared address-space (mirroring) so that each core can
also access the DSPR of other cores, although memory pro-
tection may be used to limit cross-core accesses.

Accesses to 0x5..., 0xé6..., 0x7...
DSPRs of other cores too

0xD700_0000...

0xD600_0000...

0xD500_0000...

mWHY DOES MULTI-CORE SEEM TO BE SO DIFFICULT?

Multi-core is the standard in many other domains and the
parallel paradigm is rather old, very well understood and not
really complicated. So how can it be that so many automoti-
ve projects seem to struggle with multi-core?

Other domains mostly use application parallelism and in
most cases, the software has always been organized in
threads. Such applications can easily be ported from single-
core to multi-core because parallelism has been made explicit
in the threading architecture and the multi-core complexity
can be devolved to the OS.

mREFERENCES

The application is not even aware of the number of cores it
runs on and there is no attempt to guarantee improved per-
formance on a multi-core processor.

Automotive engineers additionally want function parallelism,
even if they are not aware of this and the resulting impact.
Their “old", single-core application is not designed for multi-
core and their code generators do not indicate any inherent
parallelism in the code.

[1] Dr. Karsten Schmidt, Rolf Schneider, André Kohn, Sven
Schonberg et al.: Efficient Virtualization for Functional In-
tegration on Modern Microcontrollers in Safety-Relevant
Domains, SAE 2014, Detroit, Jan. ,14

[2] WIKIPEDIA: en.wikipedia.org/wiki/Moore %27s_law
[3]1 WIKIPEDIA: en.wikipedia.org/wiki/Gustafson %27s_law

[4] Texas Instruments: Overview for Hercules TMS570
MCUs; www.ti.com

[5]1 Dr. Michael Deubzer, Peter Gliwa, Jens Harnisch, Julian
Kienberger, Stefan Schmidhuber: Multicore Engineering
Tools and Methods, ESE Congress, Sindelfingen, Dec.'14

[6] Infineon Technologies: AURIX™ TC27xT data sheet:
www.infineon.com

[7] AUTOSAR: Guide to BSW Distribution (previously:
Guide to Multi-Core Systems); www.autosar.org

mGOLDEN RULES

The golden rules for creating simple, easy-to-
develop and efficient multi-core software are:
e Statically allocate code and data to cores

so that you can analyze and optimize that

allocation

* Localize code and data on one core to minimize
Cross-core accesses
- Duplicate data and code where appropriate to
achieve this goal
e De-couple code on different cores
- Remember that atomically accessed data (typi-
cally up to 64 bits) can be accessed by one wri-

ter and '

¢ Schedule

n' readers with no synchronization

- Reduce the number of conflicts by synchronizing
the schedule across all (related) cores and using
offsets so that tasks that access shared data run
at mutually exclusive, or at least different, times

e Where synchronization is unavoidable, understand
the relevant mechanisms

- Spinlocks for very short delays

- Spinlock with delay for longer delay

- Task switch when even longer delays are expected

mSUMMARY

As of today (2015) neither the AUTOSAR standard nor
the code-generators exploit the multi-core potential to a
high degree. The first and most important step towards
successful multi-core projects is a sound understanding
of multi-core aspects. With this, developers will learn

two things:

There is no “silver bullet” that allows legacy designs to
suddenly exploit parallel processing.

Exploiting the great potential of multi-core performance
requires parallelism to be designed in from the ground
up and support from a range of tools to predict and vali-
date timing effects.With proper understanding of multi-
core aspects and the right tools, it is possible and very
worthwhile to pursue multi-core designs.

As with the introduction of other fundamental technolo-
gies (compilers, code-generators), the period of transi-
tion requires extra know-how and brings some discom-

fort.

Before long, we can expect ubiquitous multi-core sup-
port, including the AUTOSAR standards and code-gene-

rators. Complex,

single-core projects will be the excepti-

on and will be regarded fondly as antiques.

&GLOSSARY

ABBR.

AMP| Asymmetric
multiprocessing

AURIX™

Cohesion

Coupling

10C

ISR

Multi-core

Non-blocking

(0}

OS-Application

Pipeline

Spinlock

Symmetric
Multiprocessor
System (SMP)

TASK

EXPANSION

A multi-core system with a separate operating
system per core.

Infineon family of multi-core processors based
on up to three TriCore CPUs.

Degree to interdependency (data, code
and control flow) within a given software
component.

Degree to interdependency (data, code and
control flow) between different software
components.

Inter-OS-Application Communicator. Part of
the AUTOSAR OS responsible for managing
communications from one OS-Application to
another and, by implication, from one core to
another.

Interrupt Service Routine. A short piece
software that executes sequentially to handle
an interrupt.

Having more than one core in a processor.
With no explicit qualifiers it generally implies
homogeneous multi-core.

An implementation of some kind of

communication that is guaranteed not to
block.

Operating System. An ambiguous term used
either to mean just a (multitasking) kernel or
the combination of a kernel and low-level
support software, such as device drivers. The
AUTOSAR OS is just a kernel.

AUTOSAR term for a collection of application
software. More than one OS-Application

can run on one core but an OS-Application
cannot span more than one core.

Set of processing stages for handling a
sequence of data items. As soon as the first
data item is passed from the first state to
the second stage, the first stage can start to
process the second item, introducing true
parallelism.

Mechanism for achieving mutual exclusion.
AUTOSAR uses spinlocks for mutual exclusion
across multiple cores in the same processor.

A multi-core system operating under a
single operating system with two or more
homogeneous cores.

Collection of software that executes
sequentially and often, but not necessarily
periodically.

|

G LI

w

embedded systems

gliwa.com

GLIWA GmbH embedded systems | Winterstr. 9a | D-82362 Weilheim

