TIMING SUITE FOR REAL-TIME SYSTEMS

Introduction

Static stack analysis with T1.stack

Based on the binary (the ELF file), T1.stack performs a static code analysis: the binary is disassembled, function
calls are extracted and the call tree is reconstructed. At the same time the stack consumption for each
function is determined. The call tree and the stack consumption per function are combined into the
comprehensive and powerful T1.stack view.

Sfes (om0 = R Sormany Shaw Aonolations
Shaeciy [ek
Displaying full call tree Sk 1 A
Furcgor N Saur Akbess i ot {0 a1 machotle [0 mcontet (1) sef (1) mactubie (1) aCslen Sooroe Path L
+-08_Scheduelore? [FecDepth 1] 2 &0 b [=1] I 2 \Doweloada'S
Tl _segskre o i} T Domrbsad 5
1r-wel_apgioroc:| f 1] b T Doericadi’ s
i _agpkend:() Q i} i ThDewrlaadn s
e _Bosieroe iy ')] I ZDewnkcads\S
TA_O3_Hander 0 0 Z\Dewrbcada'S
05 _Hander 0 L] T \Dowrbosds'S5
0 O%_Schedde [Fechecth:1) DuIXOG2ASY o o T\ Dosricads' S
. neclieCiow 5 e B0002200 na 2 T\ Flasambnass 5
= (5 _Sciedhielornl] [Hecliepdh 1|
= Cerell traTask [Fleclogt 1)
B TA_OS_Schwmcide [Fime Dty 1]
- T1_hepiriaruler
Cerell_imafunnatisl - BB00EA2 1% 0
ealindiects [rdCale 1] ol QufNOsinG 2 3
funC | Dl
&nB 0 i T — T 2 ket = T
s G Det [} [} T Dowmisads' S
o A 1 T - TA_Bunige_Flead 3 L] [} IDmwmisa 'S
= 1Y _BeleyFlten P [4 . - 13 2
=B APM Tk Oai0a552 136] o L] L] 1 DomrisadidS
TR Whent Sgoemnd CnEI00IFES 136] o 1 4 1 IDewradid
- Cornl)_SlmaTank [FlecCagiiy 1] Fod PTG 136] 1 113 £ 12
T1_TracafvantioSun_ 136 [o [} 5l Fliswnloadis
o Corell_vaeabds Task i 136] {1 °] Tz I T Downlead'S
& Corel Tk aB00030CE 136] o -] -] 1 T\Dewrkah'S
© Corell_25maTask [Recenth:1] Tl e D 00000 13%] o o o 1 ZDosnloads'S
4 Cioned_ackground Task rpd e B0030A a 0 152 i T4 Z\Dowricaden§ ¥
< >

Indirect function calls

For any static code analysis there are limitations with respect to resolving indirect function calls.
Such calls typically use function pointers and it is essential to know all call-targets (functions) which
can possibly be called at run-time. T1.stack allows to complete any gaps in the static analysis through
annotation. Three kinds of annotation are supported: manual annotation, import of generated annotation
files and annotation through T1.flex measurements. Simply measuring call-targets is unique and a high-
light of T1.stack. Such measurements can also be used to cross-check and verify annotations from
other sources.

See example on the back page: \ I

Unresolved indirect function call:

[+ Core_ImsRunnable0 -2 0xB00035A2 136 0 8 2% 64 192
| Ercallindirects [indCalls:2] (¥ («8000510E 136 0 8 256 64 0
| | L“func | 0x80005106 144 8 H 192 0 0
| EB-TA_Button_Read 3000400C 136 0 0 256 0 0
| E-T1_DelayRoutinePC 0xB0D0BFSE 136 0 0 320 64 128
| B Engine_RPMTick (80004952 136 0 0 256 0 0
Resolved indirect function call by dynamic T1.flex measurement:
= Corel_1msRunnabled o (30003542 136 0 3 256 [192
| B-callindirects [IndCalls:2] [x8000510E 136 0 2 256 64 64
| | Ffunc B x80005106 144 8 3 192 0 0
| | ffunB | 0xB00DS0F4 136 0 0 256 0 0
| | “funa B x800050E2 136 0 D 256 0 0
| E-TA_Button_Read xB3000400C 136 0 D 256 0 0
| & T1_DelayRoutinePC x80008F3E 136 (i} 0 320 64 128
| - Engine_RPMTick x80004952 136 0 0 256 0 0

T1.stack offers the advantage of detailed analysis. It detects
not only of the amount of used stack but also how and why
it is used. Deep understanding of stack consumption allows
successful optimization of stack usage and detection of
unintended or purposeless use of the stack. Using less stack
often helps to improve runtime performance.

When using a high level language it is not possible to pre-
dict the stack usage from even a detailed knowledge of
the C source code. With auto-generated code, the problem
is even worse. Using T1.stack, stack consumption can be
continually tracked so that the effects of coding and
compiler flags can be monitored and understood.

The accurate and detailed analysis of total stack usage
combined with validation allows stacks to be reliably di-
mensioned with T1.stack and thus avoids the waste of allo-
cating unnecessary memory. What's more: stack-overflows
can be avoided.

Key benefits include:

e Static analysis based on the binary file
* 3 party code can be analyzed without the source code

e Compiler effects (e.g. optimizations) are also taken into account

* Measurement assisted resolving of indirect function calls
(function pointers)

e Extreme fast analysis (e.g. a 150MB ELF file of an engine manage-

Tl.stack (Corel) l/T'I.ccnt Table Yiew Vrunnable:.c (Corel)

Sourca

Disassembly | |" ” i |

Merged

£ pragma warning 537
fendif /* _ TRASKING */

GTF_UNUSED (wolatile int a) = 1;
funC:
g2 1f mowv £d1s,
20 08 sub.a %=p, B
78 01 st.wW [¥3p]
Al 0x8000510c: 00 S0 ret
$ifdef _ TASKING
£ pragma warning default
fendif /* _ TRASKING */
e
void ecallIndirects(wvoid |
pFanction(}; /* indirect call =*/

callIndirects:

80005112: %9 f£ff 30 00 1d.a %als,
A]0x80005116: 2d 0f 00 0O calli %315
/* indirect call using a cons

51 10 00O £8 movh.a %als,

99 £f 00 ac ld.a %315,

de 0f ii %als

Technical data

Supported CPU architectures:
e Infineon TriCore (*)

e ARM, ARM Thumb

e PowerPC, PowerPC VLE (*)
e RH850

e x86

ment ECU could be analyzed in less than two minutes on a regular PC)

e Call tree offers additional insights into the software structure

¢ Built-In source code- and disassembly-viewer

GLIWA GmbH embedded systems
Pollinger Str. 1
82362 Weilheim i.OB. | Germany

gliwa.com

(*) enhanced static analysis engine

fon +49 - 881-138522-0
fax +49 - 881 - 13 8522 - 99
mail: info@gliwa.com

