
TIMING SUITE FOR REAL-T IME SYSTEMS

T1.stackT1.stackT1.stackT1.stackT1.stack

T1.sta
ck

PANTONE 347

T1.accessP
red

ict
or

PANTONE 681

T1.tim
ing

PANTONE 279

C69 M34 Y0 K0 C92 M0 Y97 K0 C24 M64 Y4 K3

Introduction

Static stack analysis with T1.stack

Based on the binary (the ELF file), T1.stack performs a static code analysis: the binary is disassembled, function
calls are extracted and the call tree is reconstructed. At the same time the stack consumption for each
function is determined. The call tree and the stack consumption per function are combined into the
comprehensive and powerful T1.stack view.

Indirect function calls

For any static code analysis there are limitations with respect to resolving indirect function calls.
Such calls typically use function pointers and it is essential to know all call-targets (functions) which
can possibly be called at run-time. T1.stack allows to complete any gaps in the static analysis through
annotation. Three kinds of annotation are supported: manual annotation, import of generated annotation
files and annotation through T1.flex measurements. Simply measuring call-targets is unique and a high-
light of T1.stack. Such measurements can also be used to cross-check and verify annotations from
other sources.

 See example on the back page:
 

COST-EFFECTIVE,
DETAILED AND ACCURATE
STACK ANALYSIS

CALL TREE

128 64 832128 64 83264

NUMBER OF BYTES ON THE
STACK CONSUMED BY

PREVIOUS FUNCTIONS SO FAR

NUMBER OF BYTES ON THE
STACK CONSUMED BY
THE FUNCTION ITSELF

THE MAXIMUM STACK CON-
SUMPTION POSSIBLE, AS
SEEN FROM THE CURRENT
CONTEXT (THIS POSITION IN
THE CALLTREE)

GLIWA GmbH embedded systems
Pollinger Str. 1
82362 Weilheim i.OB. | Germany

gliwa.com
fon +49 - 881 - 13 85 22 - 0
fax +49 - 881 - 13 85 22 - 99
mail: info@gliwa.com

Unresolved indirect function call:

Resolved indirect function call by dynamic T1.flex measurement:

T1.stack offers the advantage of detailed analysis. It detects
not only of the amount of used stack but also how and why
it is used. Deep understanding of stack consumption allows
successful optimization of stack usage and detection of
unintended or purposeless use of the stack. Using less stack
often helps to improve runtime performance.
When using a high level language it is not possible to pre-
dict the stack usage from even a detailed knowledge of
the C source code. With auto-generated code, the problem
is even worse. Using T1.stack, stack consumption can be
continually tracked so that the effects of coding and
compiler flags can be monitored and understood.
The accurate and detailed analysis of total stack usage
combined with validation allows stacks to be reliably di-
mensioned with T1.stack and thus avoids the waste of allo-
cating unnecessary memory. What‘s more: stack-overflows
can be avoided.

Key benefits include:

• Static analysis based on the binary file
• 3rd party code can be analyzed without the source code
• Compiler effects (e.g. optimizations) are also taken into account
• Measurement assisted resolving of indirect function calls
 (function pointers)
• Extreme fast analysis (e.g. a 150MB ELF file of an engine manage-
 ment ECU could be analyzed in less than two minutes on a regular PC)
• Call tree offers additional insights into the software structure
• Built-In source code- and disassembly-viewer

 indirect function call by dynamic T1.flex measurement:

Technical data

Supported CPU architectures:
• Infineon TriCore (*)
• ARM, ARM Thumb
• PowerPC, PowerPC VLE (*)
• RH850
• x86

(*) enhanced static analysis engine

