
DETECT INVALID MEMORY ACCESSES

T1.accessPredictorT1.accessPredictorT1.accessPredictorT1.accessPredictorT1.accessPredictor

T1.accessPredictor makes it possible to detect access violations before the soft-
ware runs on the target hardware

Upset by MPU exceptions in the field? Tracking them down while
the software executes can be very time consuming and costly.
T1.accessPredictor allows you to check for any memory access
violations before even flashing the software. Think of it as an
“off-line MPU”.

Analyzing the binary rather than the source code has significant advantages

• It is a long way from the source code to the binary and assu-
ming that no additional accesses were injected by the compiler
and linker is a critical assumption in a safety-relevant context.

• C source analysis also omits any assembler code.

• What’s more today’s ECUs incorporate software components
from various parties. None of them has a full view on 100% of
the sources so a complete analysis is impossible when perfor-
ming source code analysis.

T1.sta
ck

PANTONE 347

T1.accessP
red

ict
or

PANTONE 681

T1.tim
ing

PANTONE 279

C69 M34 Y0 K0 C92 M0 Y97 K0 C24 M64 Y4 K3

CHECK MEMORY ACCESSES
BASED ON THE BINARY ONLY

ELF

*.c no
sourcecode
necessaryT1.sta

ck

PANTONE 347

T1.accessP
red

ict
or

T1 acceessP
red

ict
or

T1 ccessP
red

ict
or

PANTONE 681

T1.tim
ing

PANTONE 279

C69 M34 Y0 K0 C92 M0 Y97 K0 C24 M64 Y4 K3

 “Thanks to T1.accessPredictor we could reduce the time spent for

 finding illegal memory accesses in our engine management pro-

jects dramatically. T1.accessPredictor finds these by statically (on the

PC) analyzing the binary – without the need of executing the code on

the target.” - Feedback from a customer who has been using T1.access-

Predictor in several projects“
AVOID MPU EXCEPTIONS

ming source code analysis.

Using T1.accessPredictor is very simple; there are only a few steps to take

Step 1: Specify the different access classes using the intuitive GUI, add symbols/sections/memory areas and
define in which way (Read, Write and eXecute) every class may access the other classes. “Execute” refers to
code accesses such as function-calls. In the example, four access-classes were defined: ASIL_A, ASIL_D, QM
and Flash.

Step 2: Read in the binary, the ELF file. T1.accessPredictor will disassemble the binary and perform a static analysis
based on abstract interpretation. Afterwards T1.accessPredictor presents a “bi-directional” call-tree indicating
a) which function calls which other functions and b) by which other functions a function gets called.
Step 3: If necessary, add annotations (manually, generated or measurement-based) to complete the call-tree.
Step 4: Analyze the results! The call-tree indicates access violations with red exclamation marks: for invalid data
accesses and for invalid code accesses.

Step 5 (optional): Export the results for regression tests for subsequent software releases.

A) CREATE
 ACCESS
 CLASSES B) ASSIGN SYMBOLS,

 SECTIONS OR MEMORY
 AREAS TO CLASSES

C) DEFINE ACCESS
 RIGHTS BETWEEN
 THE CLASSES

Step 5 (optional): Export the results for regression tests for subsequent software releases.

GLIWA GmbH embedded systems
Pollinger Str. 1
82362 Weilheim i.OB. | Germany

gliwa.com
fon +49 - 881 - 13 85 22 - 0
fax +49 - 881 - 13 85 22 - 99
mail: info@gliwa.com

