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Abstract

Many software-based functions in modern cars have
strict timing constraints. Due to the ever growing num-
ber of such functions and the trend towards higher in-
tegration, the development of automotive systems is
becoming more complex. The industry has realised
that model-based software engineering approaches are
required to cope with this increasing complexity and,
among others, to ensure the fulfilment of the timing
constraints. Therefore, different kinds of tools are re-
quired for the various engineering steps during the whole
timing-aware development process.

For AUTOSAR systems, the tooling for timing-aware
development is not yet fully satisfying. First, most of
the existing tools focus only on a specific step of the en-
gineering process. Second, if at all, today’s interaction
of tools is often realised as two-sided island solutions
based on proprietary import and export interfaces. Tool
interaction however is required to allow specific tools for
single engineering steps to be integrated into a seamless
tool support. To our best knowledge, the existing ap-
proaches are neither based on a common infrastructure
nor on a standardised timing model. Finally, appro-
priate tools for the specification of AUTOSAR timing
requirements are missing.

This paper proposes a tool support for seamless timing
specification, analysis and verification that overcomes
the current challenges. The solution integrates a) Ar-
time, a textual editor to specify timing requirements,
b) Gliwa’s timing suite T1 , a target timing measure-
ment tool to gather timing guarantees and c) Artip, a
graphical timing verification tool, which compares re-
quirements and guarantees and visualises the results.
Our approach integrates all tools necessary for a seam-
less model-based system development based on the stan-
dardised timing model offered by the AUTOSAR Tim-
ing Extensions. We implemented Artime, Artip and the
integration of Gliwa’s timing tool suite T1 as plug-ins
for Artop [6].

We applied this approach in a series development
project at BMW Group. In the project we showed how
our proposed tool support for seamless system develop-
ment improves the application of the AUTOSAR Timing
Extensions in practice. The tool support, its embedding
in the engineering process, and the results of the appli-
cation are presented in this paper.

Keywords: AUTOSAR, Timing Extensions, Timing
Model, Timing Analysis, Tool Support, Practical Use,
Artop, Artime, T1

1 Introduction
Modern car functions, realized by electronics and soft-
ware, have driven many innovations in the automotive
industry. Meanwhile, complex functions are present in
many small-sized premium cars as well and define the
new standard of user experience and driver assistance
for the near future. The functions are typically provided
by interactive distributed real-time systems. The devel-
opment of these vehicle electrical systems is a complex
task (see for example [2, 7]).

Some of the car functions must be provided within
given time bounds to function properly. Timing con-
straints are typically driven by physics (e.g. repetition
rate of control loops) or derived from end user require-
ments (e.g. immediate reaction to user input). As many
parts of modern vehicle electrical systems are software-
based, correct timing behaviour of the software is vital
to the fulfilment of timing constraints.

Figure 1: Example for timing constraints derived from
physics

For a better understanding, we provide an example
from the chassis domain in a car. The example function
is an active steering, which is capable of overlaying the
drivers steering action with an additional or subtrac-
tive steering angle. This allows changing the steering
ratio gradually according to the vehicle speed and also
implements a number of stability enhancing functions.
Figure 1 illustrates the data path and the separate time
segments which add up to the total end-to-end time.
With the vehicle dynamics model of the car and the ac-
tive steering function on his mind, the functional devel-
oper defines a minimum reaction time for the complete
chain, here 30ms.
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The example includes sensors (yaw rate, angle), buses
(CAN, Flexray), ECUs1 (ICM2, ASA3) and actuators
(motor driver).

The angle sensor and its CAN connection to the ICM
is also affected by the timing constraints. For the sake
of simplicity it is not considered in this paper.
T1 and T5 in the example are mostly hardware de-

pendent and typically produce a constant delay in the
path. T3 reflects the communication overhead produced
by the Flexray bus – depending on the Flexray configu-
ration. T2 and T4 represent the time spent “within” an
ECU for receiving, processing and transmitting data.
This paper focuses on such ECU internal timing. It
is influenced by a number of things: scheduling strat-
egy, execution times, blocking times, operating sys-
tem configuration, communication strategies, communi-
cation buffer sizes and synchronisation effects. Flexray
communication typically introduces synchronisation ef-
fects since the ECU internal schedule with its periodical
tasks based on its ECU internal clock source has to be
synchronised with the independent Flexray timing. The
use case described later in Sec. 5 for example includes
timing constraints related to the Flexray synchronisa-
tion.

It is important to a) be aware of the system’s timing
constraints, b) clearly document and specify the con-
straints and c) verify that these constraints are met
in the production software. Documentation and veri-
fication of timing constraints become especially impor-
tant for the distributed development process typical of
the automotive industry. For a single ECU, suppliers
and car manufacturers contribute parts of the software
as black-boxes. More and more, these black-boxes are
AUTOSAR software components with well-defined in-
terfaces. When integrated together in one ECU, these
components influence the timing on a system level with
all its preemptions and concurrent run-time require-
ments [8, 7].

Since AUTOSAR Release 4.0 (Dec. 2009), timing be-
haviour can be described as so-called Timing Extensions
for software components, compositions, basic software
and for the entire system [1]. The resulting specifica-
tions can be exchanged between development teams ei-
ther as timing requirements or as timing guarantees. We
outline our timing development methodology in Sec. 2.

During the practical application of the AUTOSAR
Timing Extensions we realized that a successful roll-out
in production projects is largely determined by the avail-
ability of related tools. Therefore, we implemented and
integrated appropriate tools, as depicted in Fig. 2. The
goal of our approach is to enable systematic and highly
automated verification of timing constraints of an AU-
TOSAR system. To achieve this, the following building
blocks are required:

• The origin of timing requirements for subsystems
are timing constraints of functions. In Sec. 2 we
outline Timex, a model to capture such function

1Embedded Control Unit
2Integrated Chassis Module
3Aktuator Steuergerät Aktivlenkung = actuator control unit
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Figure 2: The tools at their position in the V model.

timing constraints. In this paper, however, we con-
centrate on the already derived timing requirements
within the scope of AUTOSAR.

• A formal timing model is the basis as well as the
common exchange format of all tools. The stan-
dardized AUTOSAR Timing Extensions pro-
vide this timing model.

• Specification tools are needed to make the model us-
able for developers and system designers. Therefore
we developed a textual timing editor called Artime
to specify timing requirements. Artime is a plug-in
for Artop [6].

• Measurement based timing analysis tools are used
to gather timing behaviour information from a
given embedded system at run-time. The results
are different kinds of timing properties which are
then interpreted as guarantees. In our tool chain,
we use the timing analysis tool T1 [4].

• We developed a simple verification tool called Ar-
tip that compares timing requirements and timing
guarantees. The system designer and integrator can
use it to visualize the fulfilment of the systems tim-
ing requirements by the according guarantees.

• For all the tools listed above, a common integration
platform is required for a successful and smooth ap-
plication. We employ Artop as this tool platform.
Artime and Artip are realized as Artop plug-ins.
We implemented an additional, tool-specific Artop
plug-in, called ArT1, to connect the Artop envi-
ronment to the separate T1 timing suite.
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Our approach focuses solely on the abstraction levels
covered by AUTOSAR. In contrast to TIMMO-2-USE
[10], the higher levels of abstraction (e.g. the Vehicle
Level, the Analysis Level and the Design Level as men-
tioned in [3]) are not in this scope. In addition, we
do not consider any functional requirements, which are
not related to timing since many established tools and
methodologies already exist here.

Current requirement specifications in the ECU de-
velopment typically formulate timing requirements in a
rather unspecific manner in natural language. Further,
development experience in mass production projects has
shown that the CPU load (a typical rather abstract tim-
ing requirement) can function as a very easy to handle
“summary value” but is not sufficient. The AUTOSAR
standard [1] and the research community [7] provide
techniques to specify timing requirements precisely and
a sophisticated distributed development methodology.

Our proposed tool support for seamless system devel-
opment shows how the AUTOSAR Timing Extensions
standard can be rolled out in series car manufactur-
ing and brings theoretical real-time system development
concepts to practice.

2 Timing Constraints in Dis-
tributed Development

Traditionally, and supported by the AUTOSAR devel-
opment partnership, the automotive industry is work-
ing in a distributed development process. Subsystems
are typically developed by suppliers according to the car
manufacturer’s specification of the subsystem’s desired
functionality. The car manufacturer has the role of a sys-
tem designer and system integrator in that distributed
development process. The suppliers usually only ex-
change information with the car manufacturer and not
among each other, although they collaboratively develop
the same automotive system. The car manufacturer,
who has a view on the entire system, knows all timing
constraints of the system and must ensure their fulfil-
ment after all subsystems have been integrated into the
overall system.
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Figure 3: Roles, collaboration workflows and develop-
ment contexts in distributed development of automotive
real-time systems.

Figure 3 summarises the roles and collaboration sce-
narios of distributed development of automotive sys-
tems. A SWC 4 developer supplies a SWC. This role
is rather new to the automotive industry and mainly
driven by AUTOSAR. Software components are inte-
grated into an ECU by an ECU developer, who in turn
delivers his ECU to the system designer. If an ECU de-
veloper integrates a third party SWC in his ECU, we call
this collaboration workflow SWC integration. If a sys-
tem designer integrates a third party ECU in his system,
we call this collaboration workflow ECU integration.

Each single supplier develops and bears for his subsys-
tem and its timing requirements. However, the subsys-
tem implementations also influence the timing behaviour
of other subsystems. Thereby they influence the timing
behaviour of the entire system. Thus, every subsystem
takes part in fulfilling the overall timing constraints of
the system. As the suppliers of the subsystems do not
collaborate directly with each other, but only with the
system designer, the system designer must control the
timing behaviour of the subsystems by coordinated sub-
system timing requirements. These subsystem timing
requirements must be derived from the given timing
constraints of the system.

In [7] we propose a timing model and a methodol-
ogy for distributed development of automotive real-time
systems. The work drives the following main ideas: The
origin of timing constraints are the functions of the sys-
tem. Therefore these constraints are the basis for our
approach. We call them function-triggered timing con-
straints. These timing constraints are independent of
the realization of the functions using hardware and soft-
ware. Many car functions have such constraints. They
typically stem from physics and car safety (e.g. sample
rates in the chassis domain) or from customer require-
ments (e.g. tolerated end-to-end latencies for function
activation). The function-triggered timing constraints
must be identified and specified by the system designer
using an appropriate timing model. We developed such
a model, called Timex. Thereafter, the overall system
is decomposed into subsystems. Subsystems are SWCs,
ECUs or communication busses. SWCs and ECUs are
typical subsystems provided by suppliers. The busses
are typically developed (i.e. configured or defined) by
the system designer. All subsystems are developed by
several different suppliers (or also the system designer
itself) and integrated into one system, see Fig. 3. This
means that so-called timing requirements for subsystems
must be derived from the function-triggered timing con-
straints of the system functions. Note the difference in
the meaning of a timing constraint (for functions, inde-
pendent from the realization of the functions) and tim-
ing requirements (for subsystems, derived from the con-
straints) in our nomenclature. The resulting implemen-
tation of a subsystem shall be accompanied by timing
guarantees of its timing behaviour to indicate how the
timing requirements are fulfilled. The subsystem struc-
ture as well as the timing requirements and guarantees
of the subsystems are also modeled using Timex.

4In AUTOSAR, a Software Component is a collection of soft-
ware functions which implement a certain functionality
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The derivation of subsystem timing requirements is
performed in a way such that they can be verified inde-
pendently from each other (no more timing dependen-
cies between subsystems). The goal is to ensure the sys-
tem’s correct timing behaviour just by comparing each
subsystem timing requirements with its timing guaran-
tees. The system timing constraints shall be fulfilled if
all requirements are fulfilled by their guarantee. There-
fore several rules are applied for the derivation process,
which ensure this subsystem decoupling. Basically, we
define mathematical relations between functionally as-
sociated requirements, such that in a worst case still the
function’s timing constraints are fulfilled. An example
therefore is that the sum of the maximum latency re-
quirements along a data path must be less than or equal
to the maximum latency of the entire path, which rep-
resents the function (see the example in Sec. 1).

In an iterative development process it can happen that
a requirement is not fulfilled by its guarantee, i.e. by the
implementation. In that case the timing correctness of
the system cannot be ensured. However, this does not
necessarily mean the function development failed. Often
such non-fulfilments stem from wrong timing configura-
tions (priorities, offsets or periods). By supervising the
timing requirements and providing traces visualising the
run time situation around the violation, the timing suite
T1 focuses on solving such timing problems.

The system integrator has an overview of all require-
ments and guarantees of the subsystems. In our work in
[7] we propose a constraint logic programming approach
to model the problem of finding an appropriate new set
of timing requirements, based on the current set of guar-
antees. The approach is based on the idea that unused
spare time can, in some cases, be redistributed to re-
solve unfulfilled timing requirements. The new timing
requirements are considered by the subsystem suppliers
by new appropriate timing configurations, if possible. In
[7] we define a number of rules based on predicate logic
that control in which cases requirements can be changed,
or adapted to the new situation.

The timing requirements that are specified with Ar-
time in this work are already derived from function-
triggered timing constraints. The derivation process is
outside the scope of this paper.

3 AUTOSAR Timing Extensions

Since Release 4.0, the AUTOSAR Timing Extensions
[1] are part of the AUTOSAR standard. It represents
a timing model as formalisation basis of relevant tim-
ing dependencies and according timing requirements and
guarantees in an AUTOSAR system.

The name of the model is driven by the fact that it
extends the AUTOSAR Software Component Template
and System Template and allows to selectively enrich
the specification with timing information where needed.

The Timing Extensions concept is based on the funda-
mental elements event, event chain and timing require-
ments and guarantees. In the following, these elements
are described in more detail.

3.1 Timing views

According to the AUTOSAR methodology, the devel-
opment of an AUTOSAR system undergoes different
phases. The AUTOSAR Timing Extensions support
this methodology and provide five different timing views
to an AUTOSAR system: VfbTiming, SwcTiming, Sys-
temTiming, BswModuleTiming and EcuTiming.

SwcTiming allows for the definition of a timing exten-
sion for a concrete software component. Thus, all the
timing requirements specified in this view must be ful-
filled by the target, independent in which system context
the respective software component is applied.

SystemTiming is used to define timing extensions for a
specific system. In this case, system relevant properties
like the topology, software component deployment and
signal mapping are known. Thus, timing requirements
specified in this view are specific for this system.

For a more detailed description of all the different tim-
ing views, please refer to [1].

Considering the example described in Sec. 1, different
timing views can be applied during the different devel-
opment phases. First, for the the complete function a
VfbTiming is defined, containing the top-level timing
requirements like for example the end-to-end reaction
time requirement of 30ms as mentioned in the example.
This view is typically specified by the system designer
as mentioned in Sec. 2. Afterwards, a SystemTiming
is derived from the VfbTiming and includes a system
specific refinement of the original requirement at Vfb5

level. In the example, the latency requirement is divided
into the segments T1 to T5 by taking the topology and
deployment decisions into account. This is still the task
of the system designer. In the next development step,
an EcuTiming is extracted for each involved ECU and
exchanged between system designer and ECU developer
during the collaboration workflow ECU integration as
mentioned in Sec. 2.

3.2 Events and Event Chains

Events are used to describe system behaviour which can
be observed during runtime of the system (see Fig. 4).
The activation of an AUTOSAR RunnableEntity or the
reception of an AUTOSAR VariableDataPrototype at
the receiver port of a SWC are examples of such ob-
servable system behaviours. It is important to note
that the specification itself is independent of the actual
occurrences of these observable events. The event de-
scribes the required behaviour, the occurrences of that
behaviour can then be observed at runtime.

Events can be correlated with event chains. An event
chain specifies a causal relationship between the asso-
ciated stimulus event and response event. In addition,
chains can be hierarchically decomposed into segments
(see Fig. 4).

The AUTOSAR Timing Extensions provide a prede-
fined set of event types and restrict their usage for the
different views mentioned above. Figure 5 shows two ex-
amples of predefined event types. An event of type TDE-
ventVariableDataProtoype is used to describe the point

5Virtual Function Bus
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Figure 5: Exemplary event types [1]
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Figure 4: The concept of events and event chains [1]

in time when the referenced VariableDataProtoype has
been sent or received by the associated software compo-
nent. An event of type TDEventFrame is used to de-
scribe the point in time when the referenced frame has
been queued for transmission or received by the associ-
ated ECU instance.

The full list of event types and a more detailed de-
scription of the event chain concept is available in the
official AUTOSAR specification [1].

Considering the example described in Sec. 1, an event
chain must be defined from the sensor data acquisition
to the actuator access. Thus, the stimulus event tar-
gets to the VariableDataPrototype of the sensor soft-
ware component which is used to get the sensor data
from the ECU hardware abstraction layer. The response
event targets to the VariableDataProtoype of the actu-
ator software component which is used to communicate
the target value to the ECU hardware abstraction layer.
Furthermore, the whole event chain is refined by sub
chains. The sub chains represent T1 to T5 as shown in
Fig. 1.

3.3 Timing Requirements and Guaran-
tees

Timing requirements and guarantees are the central el-
ements of the AUTOSAR Timing Extensions. They are
used to restrict or respectively assure the timing be-

haviour of the referenced system context. Depending on
the type, timing requirements and guarantees use events,
event chains or concrete RunnableEntities to specify the
scoped system context. The AUTOSAR standard thus
supports the methodology for distributed development
of automotive real-time systems described in Sec. 2.

In the use case presented in this paper (see Sec. 5), we
focus on the requirement types latency, execution order
and execution time.

A latency requirement bounds the time duration be-
tween the occurrences of the stimulus and the response
events of the associated event chain. With an execution
order requirement, the requested control flow regarding
the activation of RunnableEntities can be restricted. Ex-
ecution time requirements specify the allowed lower and
upper time bounds for the execution of RunnableEnti-
ties and can be either of type net (do not consider in-
terruption and external calls during execution) or gross
(do not consider interruption for the determination of
the execution time).

The full list of timing requirements and guarantees is
described in the official AUTOSAR specification [1].

Considering the example described in Sec. 1, a latency
requirement of 30ms must be defined for the event chain
from the sensor to the actuator (see exemplary event
chain in Sec. 3.2). The requirement is of type Reaction,
because it bounds the time delay from the perspective
of the stimulus event: every time the stimulus event
occurs, a reaction is expected to occur within 30ms. In
a next step, when more details about the system context
are known (e.g. topology, deployment), the end-to-end
latency requirement is refined into the several segments
T1 to T5. As described in Sec. 2, the refinement must
ensure that the sum of the requirements for the segments
fulfills the higher level constraint for the whole end-to-
end chain.

3.4 Application Experience

As described above, our approach concentrates on a spe-
cific feature subset of the AUTOSAR Timing Exten-
sions.
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We assume that this subset is sufficient for most of the
envisioned real world applications. The additional fea-
tures are designed for specific environment conditions.

The original AUTOSAR Timing Extensions are de-
rived from a pure top-down development process as en-
visioned by the AUTOSAR methodology. However, real
world applications show that timing gets typically more
relevant at later phases of the development process. In
this case, timing requirements are not subsequently de-
rived during system development, but identified and de-
fined in the implementation and integration phase in a
bottom-up manner. Thus, the AUTOSAR Timing Ex-
tensions must also provide the features requested in such
constellations. During the realization of our approach
we detected respective feature gaps (e.g. the definition
of the execution time requirement). These gaps will be
fixed in a future release of AUTOSAR.

4 Tools for Specification and Ver-
ification of Timing Constraints

The AUTOSAR Timing Extensions are designed to be
the exchange format for timing tools in the AUTOSAR
environment. As Fig. 6 shows, timing tools along the
automotive E/E development process use the Timing
Extensions to a) import the required input information
(e.g. ArT1 imports the specified timing requirements)
and b) export the offered output information (e.g. Ar-
time exports the specified timing requirements).

Figure 6: Tools and data-flow

For the several engineering steps along the develop-
ment process, different features and kinds of timing tools
are required. This paper proposes one possible tool sup-
port which covers all the required features during the
whole development of an automotive ECU. In an early
phase of the development, tool support is required for
the specification of timing requirements (Artime, see
Sec. 4.1). In a later phase, a timing analysis tool is re-
quired to gather information about the timing behaviour
of the system (T1 , see Sec. 4.2). In the end, verification
is required in order to compare timing requirements and
guarantees and to inform the developer about possible
mismatches (Artip, see Sec. 4.3).

As our approach shows, different tools together com-
pose a continuous tool support as an integrated tool
chain. We use Artop, the AUTOSAR tool platform [6] as
common basis for all the tool chain elements. On the one
hand, the single tools can benefit from Artop, since it
provides basic tooling features like the AUTOSAR meta
model, model import/export features or workspace man-
agement. On the other hand, since Artop is based on
the Eclipse Platform6, all the different tools can be com-
posed to an integrated development environment (IDE)
to form an integrated tool chain. Artime and Artip are
implemented as Artop plug-ins and are fully integrated.
T1 is a distinct tool platform but, using the plug-in
ArT1 as shown in Fig. 6, T1 can also be integrated
into Artop and accomplish the required integrated tool
chain.

4.1 Artime - Timing Specification Tool

The AUTOSAR Timing Language (Artime) is a tex-
tual language for the formal specification of timing re-
quirements and guarantees using a well-defined textual
syntax. The Artime formalism is compatible to the AU-
TOSAR Timing Extensions described in Sec. 3.

In 2011, Artime has been contributed to Artop as
example language of the ARText framework7. ARText
users profit from the easy-to-learn textual representation
of an AUTOSAR model, since it improves the readabil-
ity and understandability of the model. In addition,
such a textual notation facilitates model management
like version or change control.

Artime provides several features for the textual spec-
ification of timing requirements and guarantees. Syntax
highlighting and text completion by providing proposals
for keywords or model references are very useful features
during this engineering step. In addition, the Artime
scoping mechanism supports the developer in creating a
valid and consistent specification by proposing context-
aware model references.

Artime allows to specify most of the requirement types
of the AUTOSAR Timing Extensions (see Sec. 3) and
has already been used in series projects at BMW Group.

Timing specifications made using Artime are fully
compatible with the formalism defined in the AU-
TOSAR Timing Extensions standard. This feature is
used by Artime to make on-the-fly transformations from

6http://www.eclipse.org/platform/overview.php
7http://www.artop.org/artext/
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Artime models to AUTOSAR standard models. The de-
veloper is then able to export his timing specification
to the official AUTOSAR exchange format (XML) and
vice versa. This enables even a mixed specification tool
environment, consisting of Artime and other arbitrary
specification tools that are also compatible to the AU-
TOSAR timing extensions.

In the following, some specification snippets are shown
to illustrate the key language elements of Artime. Com-
posed together, the code snippets formulate a complete
and syntactically correct Artime example to specify a
latency requirement for a RunnableEntity that is only
valid in the scope of the ECU ICM.

Import - Import statements make the specification
easier to read, since model elements can be referenced
without qualifying them with the fully qualified name.
package icm.timingspec
import components.integration.IntComHdl .*

View - Select the desired Timing Extensions view
that shall be created (e.g. EcuTiming) and define the
respective scope (here ICM).
timing ICMTiming ecu System.ICM {

Events - Easily and quickly define timing events for
given AUTOSAR model elements.

runnable RunnableCom =
IntComHdl_Behavior.IntComHdl_InputQM_66ms
context compositions

.System :: blackbox

.functionLayer.comHandler

event IntCom_InputQM_Activated
= RunnableCom :: ACTIVATED

event IntCom_InputQM_Terminated
= RunnableCom :: TERMINATED

Event Chains - Define event chains by relating
events.

eventchain IntCom_InputQM_Chain
stimulus IntCom_InputQM_Activated
response IntCom_InputQM_Terminated

Timing Constraints - Constrain the timing be-
haviour of AUTOSAR systems or subsystems.

requirement latency IntCom_InputQM_Latency {
scope IntCom_InputQM_Chain
min 0 usec
max 800 usec

}
}

4.2 T1 - Timing Analysis Tool
Timing analyis tools as depicted in Fig. 7 analyse tim-
ing properties at two different levels: the code level and
the system level [4], [9], [5]. At the code level, they deal
with computation time, which is unaffected by preemp-
tion and depends only on the amount and complexity
of code. At the system level, they deal with real time,
which is affected by ECUs and buses. End to end timing
requirements as described in the example in Sec. 1 are
typical for the system level view. When considering a
single ECU, two kinds of timing views are possible: the

RTOS level and the code level. On the RTOS level, com-
putation time, preemption from higher priority activity
and blocking from lower priority activity are relevant.
The code level finally explicitly excludes any preemp-
tions/interruptions and considers an isolated function or
code-fragment only. Figure 7 clearly indicates that the
system-, RTOS and code level views are closely related
to the granularity of the scope.

Figure 7: System, RTOS and code level timing analysis
overview

The V-model distinguishes two different phases of de-
velopment: On the left side of the V, we have the early
phase of design and construction of the system. On the
right side of the V, we have the late phase of testing, ver-
ifying and validating the constructed system or system
artifacts (see also Fig. 2).

Early phase code level analysis is performed by simu-
lating the CPU executing the real software or by com-
puting the worst-case execution time (WCET) of soft-
ware by modelling the processor and software. At the
late phase, computation time can be measured but pre-
emption must either be disabled or taken into account
when regarding the code level.

RTOS level analysis is performed in an early devel-
opment phase by simulating both code level and pre-
emption effects or by computing the worst-case response
time (WCRT) using static scheduling analysers that
model the operating system and the interaction of tasks
and interrupts. In the late phase, response times can be
directly measured.

Gliwa’s T1 is a timing suite based on measurement
and tracing. The scheduling related events task activa-
tion, task/interrupt start, task termination and inter-
rupt end are instrumented by T1 as part of the build
process. The instrumentation overhead is processor and
project dependent but e.g. for the Infineon TriCore as
less as 178ns per event at 180 MHz processor speed. This
results in a CPU load required for tracing of less than
0.5% for typical 32 bit automotive application. For a
screenshot of a T1 trace, see Fig. 10.
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T1 is typically used in a late phase of the V-model for
verification purposes and “at the bottom” of the V-model
for timing debugging. However, with the T1.delay com-
ponent, early phase topics can be addressed: T1.delay
injects additional processor utilisation and thus allows
the user to simulate the load of future development.
T1.delay can also measure the available headroom of
each task/interrupt for a given software.

T1 includes full awareness of preemption, allowing it
to perform analysis at both the code level and the RTOS
level, see also bottom of Fig. 7.

Tracing is the only technique that allows observation
and debugging of actual timing defects. Many timing
problems are easily solved once they are understood. Vi-
sualisation, as provided by T1 , is a highly efficient way
to understand timing behaviour, exploiting the enor-
mous capacity of the human brain to take in visual in-
formation. Thus, T1 has been successfully used in more
than 70 mass production automotive projects.

4.3 Artip - Timing Verification Tool

The ARtop TIming comPare (Artip) tool provides ca-
pabilities to compare timing requirements and guaran-
tees within an AUTOSAR model, as defined by the AU-
TOSAR Timing Extensions [1].

Its primary goal is to compare timing requirements
against timing guarantees. If for instance a latency tim-
ing requirement for a certain event chain is not fulfilled
by the respective timing guarantee, Artip visualises this
fact and informs the developer about the wrong be-
haviour. This simple feature is very important during
system development, since it emphasises possible timing
defects and alerts the developer visually.

Figure 8: The example of this paper modeled using the
AUTOSAR Timing Extensions and displayed by Artip

Figure 8 shows a requirement and guarantee snap-
shot of the example of Fig. 1 as it is displayed by the
Artip table editor. Each requirement is displayed in a
separate table row. Light green rows indicate exactly
fulfilled requirements. Dark green rows indicate require-
ments that are ”over-fulfilled” by their guarantee and of-
fer spare time that can eventually be redistributed (see
Sec. 2). Red rows indicate not fulfilled requirements in
the current development state of the system.

Artip is meant to be more than just a requirement-
guarantee comparator tool. According to our devel-
opment plans, Artip shall provide extension points for
other Artop plug-ins. This way, other tools can access
the results of the comparison algorithms and integrate

these results in their own algorithms or user interfaces.
Furthermore, Artip will be designed to be extendable
with additional compare features. For example, we plan
to add in the future a mechanism to observe the change
of guarantee values over time. Also additional other op-
tions to display comparison results are conceivable, such
as graphical display methods or a textual representation
similar to Artime.

5 Use Case

In this section, we show the application of our develop-
ment methodology described in Sec. 2 and the proposed
tool support for seamless timing development in a series
development project at BMW Group which started de-
velopment in 2011. In this project, BMW acts both as
software component developer and as system designer,
and the tier-1 supplier acts as ECU developer. See Sec.
2 for the definition of the different roles. Thus, the col-
laboration workflow of the project is SWC integration.

Compared to the theoretical considerations of Sec. 2
however, such a practical scenario with BMW collabo-
rating in a double role, additional possibilities for timing
requirements appear for the SWC integration collabora-
tion workflow in this special case. In general, the ECU
developer has the task to ensure that timing require-
ments of the integrated software component are fulfilled.
In the use case project here, these SWC timing require-
ments are relative to the system’s communication bus
schedule. This is possible since BMW designs require-
ments for its own SWC in the role of SWC developer and
defines the bus schedule in the role of system designer.

The ECU representing the use case is a component
in the chassis domain and appropriate timing of the de-
ployed software is fundamental for correct functional be-
haviour. BMW defines the system architecture – i.e. the
network architecture with its buses and ECUs – but also
develops certain SWCs. These SWCs are made avail-
able to the supplier who integrates these SWCs and cre-
ates a complete software, which then is flashed onto the
ECU. At various points in the operating system sched-
ule so called “black boxes” are present, which hold the
runnables related to the BMW SWCs. Other projects
use the term “container” instead of black box.

For the first time in a mass production project, BMW
Group used Artime as part of the requirements docu-
ment to specify the timing requirements. Already in
the supplier evaluation phase, Artime specifications were
available so that the competing suppliers were intro-
duced into the future process of ECU timing verifica-
tion. The timing requirements of the first versions of
the software were checked and assured manually by the
suppliers. This means, the Artime files were interpreted
by a developer and then checked using existing timing
measurement techniques.

The AUTOSAR Timing Extensions and Artime al-
lowed a very precise description of timing requirements
with clearly defined syntax and semantics. This ap-
proach eliminates misinterpretation of timing require-
ments with its textual description as part of the require-
ments documentation.
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One of the timing requirements used in this project
targets at software execution relative to Flexray com-
munication. Flexray is a bus, which comes with its
own clock source and requires strict timing behaviour
because it allows transmission at dedicated time-slots
according to the Flexray configuration only. These ded-
icated time-slots have to be respected by the software, in
which at least partly the timing is based on the ECU’s
own clock source. As a result, all ECUs with a Flexray
bus synchronise their software in one way or another
with the Flexray cycle.

Figure 9: Example for a timing requirement relative to
the Flexray schedule

Figure 9 visualises the Flexray-related timing require-
ment of the project. The code in the black box needs
to get executed no earlier than 3.1ms and no later than
5ms after the Flexray cycle started. The correspond-
ing Artime code to formalize the requirement is shown
below.

runnable IntComHdl = components
.integration
.IntComHdl
.IntComHdl_Behavior
.IntComHdl_InputQM_66ms
context
compositions
.System :: blackbox
.functionLayer.comHandler

event blackbox1Activated =IntComHdl :: ACTIVATED
event blackbox1Terminated=IntComHdl :: TERMINATED

/* 20ms */
requirement offset read20msStaticFrameStart {

source flexRayStart
target blackbox1Activated
min 3100 usec
max 5000 usec

}

requirement offset read20msStaticFrameStart {
source flexRayStart
target blackbox1Terminated
min 3100 usec
max 5000 usec

}

In the following the data- and information-flow be-
tween the OEM and the supplier will be explained.
Numbers in circles refer to the arrows in Fig. 6.

The Artime file is sent to the supplier together with
the general requirements document. The supplier can
now open the Artime file with the Artime plug-in for
Artop, which is capable of storing the timing require-

ments in the AUTOSAR XML format using the AU-
TOSAR Timing Extensions Á. The operating system
has been previously configured À. The supplier then uses
the ArT1 plug-in to extract the RTOS configuration,
the task-to-runnable-mapping and the timing require-
ments Â. This information is used by ArT1 in order to
achieve two things Ã. Firstly, the T1 target code config-
uration with all the T1 timing constraints to supervise
is written to a C module T1_config.c. Secondly, user
instructions are generated how to instrument all AU-
TOSAR events not related to scheduling Ä. Schedul-
ing events like task activation, start and termination
are statically instrumented by T1 already, so there is
no need for manual instrumentation. Any other event
like transmission of data xyz via RTE services requires
the user to add a function call to T1_TraceEvent(...).
With a future improvement, this manual step will be
replaced by hooking on to the generated RTE code, so
that the instrumentation is fully automated. However,
until this improvement is available the generated docu-
mentation gives clear instructions, which do not require
special knowledge about T1 or the RTE.

The supplier now builds the executable, downloads
it to the ECU and uses T1 to measure/trace and su-
pervise the timing constraints Å. T1.cont is configured
in a way that any violation will a) invoke a user (i.e.
supplier) defined callback which enters an error into the
error-buffer and b) optionally stop tracing with a pre-
defined hold-off. This allows to debug the cause of the
timing problem – the downloaded trace shows the run-
time-situation around the problem. T1.scope visualises
timing traces in a way which very much resembles an
oscilloscope. Above a time axis, the task- and interrupt-
states are indicated by different colours. Bright yellow
for the ready state, dark yellow for the running state,
green for the waiting state and no colour indicates the
terminated state. Figure 10 shows the supervision of the
timing requirement described above in T1.scope 8.

At this point, the link from the left side of the V-
model/the requirements to the right side/the verification
is complete. The following steps describe how the results
can be fed back. At the time writing, this feedback path
from the right side of the V-model to the left side has not
been implemented yet. Thus, the following paragraph
gives an outlook of the ArT1/ArTip features to come.

The measured timing properties like response times,
core execution times, CPU utilisation, jitter, period etc.
are exported into an XML file Æ. ArT1 reads this file and
allows the user to store measured timing properties as
AUTOSAR timing guarantees in the AUTOSAR XML
format Ç. These can then easily be compared to the
original requirements using ArTip È, see also Sec. 4.3.

This use case demonstrates the application of our
seamless tool support in the distributed development of
an automotive ECU. The project did benefit a lot from
this solution, since error-prone manual steps and unclear
specification formats were replaced by interacting tools
based on the AUTOSAR Timing Extensions as common
timing model.

8Since the integration of the T1 ↔ Artime coupling into the
ECU project described has not been completed, Fig. 10 shows a
constructed trace
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Figure 10: T1 trace visualising the Flexray frames and timing requirements supervision

6 Conclusion

The approach introduced in this paper joins timing tools
designed for different phases of the development process
by enabling their interaction based on Artop [6] and the
AUTOSAR Timing Extensions [1].

The implementation has been proven by a demonstra-
tor and is currently being used in a mass production
project. The tool support, especially Artime and its in-
teraction with the timing measurement at the supplier
of the ECU using T1 , leverages the practical application
of the AUTOSAR Timing Extensions industry standard.
We expect more predictable and verifiable timing of em-
bedded software, improved collaboration between BMW
Group and its suppliers and, at the same time, reduction
of development costs by using such a seamless tool sup-
port and the versatile timing specification capabilities of
the AUTOSAR Timing Extensions.
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