
Timing Analysis and

Timing Verification
today and in the future

or

Does reality matter?

18. EUROFORUM Munich, 2014-02-12 V1

Agenda

• GLIWA – who are we and what are we doing?

• An introduction to Timing Analysis Techniques

• Model based analysis and measurement / tracing
How to get the best from both

• Outlook & Summary

2

Agenda

• GLIWA – who are we and what are we doing?

• An introduction to Timing Analysis Techniques

• Model based analysis and measurement / tracing
How to get the best from both

• Outlook & Summary

3

4 4

Gliwa GmbH – company introduction

• Timing analysis and embedded software expertise since 2003

– embedded timing secured in over 120 mass-production projects

– located near Munich in Weilheim i.OB., Germany

– 11+ employees highly specialized on embedded timing/software

• Premiere on Embedded World 2014:

Stack Analysis combining static and dynamic methods

Standardization, interfaces, research

5

T1 overview

6 Version Q2 2013 Company confidential © 2013

6

T1-HOST-SW

PC based SW tool for

visualization, analysis

and configuration

T1-TARGET-SW

Embedded software

component which traces,

analyses and supervises

at run-time

T1 – key features and benefits

• Visualize timing
 Understand, debug, optimize

• Measure timing
 CPU load, core execution times, response

times, jitter, etc.

• Supervise & verify timing

• Proof models
 models of static analysis, simulation

• Designed for in-car use
No HW modifications necessary

Low bandwidth requirements.

Perfect fit for mass production projects.

• Supports literally any RTOS, any

processor and any compiler

7

Agenda

• GLIWA – who are we and what are we doing?

• An introduction to Timing Analysis Techniques

• Model based analysis and measurement / tracing
How to get the best from both

• Outlook & Summary

8

Example for embedded timing

• End-to-end (sensor to actuator) timing requirement: Deadline = 30ms

• This gets decomposed, i.e. split up and assigned to busses, ECUs

• On the busses and ECUs, competition for resources continues

What is embedded timing? Example: Active Steering

Overview of timing analysis techniques

Overview of timing analysis techniques

Pure

model

based

techniques

Simulation

based

techniques

Observation

of the real

world

Timing in AUTOSAR; further information

• Timing Extensions

”TIMEX”; since AUTOSAR 4.0
 Allow specification of timing requirements

• Timing Analysis

To be released with 4.1.3
 Use-cases based guide to timing

• Timing Poster

An introduction to automotive timing

available for download and as a hard-copy
http://www.gliwa.com

12

Timing Poster

T
im

in
g

 A
n

a
ly

s
is

 d
o

c
u

m
e
n
t

Agenda

• GLIWA – who are we and what are we doing?

• An introduction to Timing Analysis Techniques

• Model based analysis and measurement / tracing
How to get the best from both

• Outlook & Summary

13

Models

• A model represents – for a particular interest – the

relevant properties of a real system. They leave the

irrelevant properties aside and thus reduce complexity.

• Threats

– The model is wrong.

– The model does not consider a relevant property.

– The model is not used correctly.

• Consequence

– Verify your model, i.e. at defined points in time, make

sure your model reflects reality in all the relevant properties.

14

Example for model checking: CERN

• CERN

– The biggest and most expensive machine ever

– Built to prove (or disprove) the models of nuclear physics

15

Missing model checking  extra costs

• Hochrheinbrücke: bridge between

Germany and Switzerland built

starting from either side

• Due to different reference heights

and a calculation error, both ends

showed a mismatch of 54cm in

height

• A simple check e.g. with a laser

would have exposed the error early

and would have saved costs

16

Real project #1: example for a wrong model

• The developer had in his mind (which is also some

kind of model!) that the interrupt fires on edge.

• In this case the code did work but only when looking

at a real trace, the fault became obvious.

• When configured to fire on edge, the project gained

ca. 10% CPU load at once.

17

ISR configured to

fire on level rather

than on edge

If the model is

wrong, you

might waste

resources.

Real project #2: ignoring an important property

• Weeks were spent

trying to find the

cause of data

inconsistencies.

• Once tracing was

available, the cause

was found within

minutes:

an OS bug.

• No static analysis or

simulation would

have ever exposed

this. They assume

error free schedulers.

18

Missing Task activation

due to an error in the OS

If the model does not consider

important properties, it might

give you false positives.

Real project #3: wrong usage of a correct model

• A project used static code analysis in

order to get the WCET (Worst Case

Execution Time) of certain functions.

• Measurements showed results bigger than

the statically calculated results?!?

• What went wrong?

– The code analysis was correct.

– The processor model was correct.

– The HW setup for the analysis was not

configured correctly so that all results were

too optimistic by a factor of 1.5.

19

If model based

tools are not

used correctly,

they might

indicate safety

where there is

none.

Talking about worst cases, corner cases…

• Safety critical systems have software
independent supervision mechanisms.
For example an external watchdog.

• Thus, most software worst cases and
corner cases become an availability
problem and not a safety problem.

20

How to boost timing quality in automotive projects

• The V-model of software development is widely used in

the automotive industry.

Mostly for functional aspects of the software only.

• Apply the success of functional tests to timing as well:

have automated timing tests!

– HIL and in-car

– Measure execution times and response times permanently

and in the car.

– Store the min/max results in non volatile memory.

– Supervise the results at run-time and make an entry in the error-

buffer („Fehlerspeicher“) upon violations.

21

• Topics to think about when using model based approaches

– Static code analysis typically requires many manual annotations.

Due to shared development (SW provided by OEM, tier1s, tier2s),

annotations are performed by engineers not familiar with large

portions of the code. But: Faulty annotations lead to a wrong

model.

– Use worst case orientated techniques only if you are interested in

the worst case.

– Using model based techniques does not automatically bring you

on the safe side: see Toyota’s stack overflow issue: “(…)Toyota missed

some of the calls made via pointer, missed stack usage by library and assembly functions (about 350 in total),

and missed RTOS use during task switching. They also failed to perform run-time stack monitoring.(…)”

[http://edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences]

22

How to boost timing quality in automotive projects

23

How to boost timing quality in automotive projects

• Let‘s talk about optimizing software for speed.

• Donald Knuth found that less than 4% of a program usually

accounts for more than 50% of its run time

• BUT: be careful with premature optimizations:
There is this story about a team putting a lot of effort into optimizing a code segment

they found to be executed very frequently. Afterwards, the SW did not seem to run

any faster?!? Further investigation showed: they have optimized the idle loop…

• SO:

1. Understand the software and find hotspots (top down!).

2. Optimize the hotspots (modify scheduling and/or optimize code).

3. Check the results of the optimization by measurements (look at the real world).

This is essential with todays highly optimizing compilers.

Agenda

• GLIWA – who are we and what are we doing?

• An introduction to Timing Analysis Techniques

• Model based analysis and measurement / tracing
How to get the best from both

• Outlook & Summary

24

Outlook

• The gap between model

based approaches and reality

will become smaller.

– The resource consumption of

autocode will become visible on

modelling level.  SW

developers will get a feeling for

the impact on resources.

– The interfaces between timing

tools will improve: TIMEX,

OT1 (Open Timing format 1 fits all)

25

RAM: 96 bytes

Stack: 24 bytes

ROM: 914 bytes

max. CET: 66.92us

Summary

• Model based timing analyses are very important! They

– allow sound system design in the early phase

– provide efficient „what-if“ analyses

– in some cases help to find critical corner cases in the late

phase

• They do not

– automatically guarantee a safe system

– help to understand an acute timing problem in an existing ECU (at

least in most cases they do not)

• Whenever relying on model based results, cross check

with the real world.

 Reality does matter.

26

27

